会员登录|免费注册|忘记密码|管理入口 返回主站||保存桌面|手机浏览|联系方式|购物车
企业会员第1年

美国布鲁克海文仪器公司上海代表处  

激光粒度仪 测试设备 zeta电位仪 在线粒度仪 沉降式粒度仪 粘度计 比表面积测定仪

搜索
新闻中心
商品分类
  • 暂无分类
联系方式


请先 登录注册 后查看


站内搜索
 
荣誉资质
  • 暂未上传
友情链接
  • 暂无链接
首页 > 方案案例 > Effect of Swelling on Multiple Energy Transfer in Conjugated Polymer Nanoparticles
方案案例
Effect of Swelling on Multiple Energy Transfer in Conjugated Polymer Nanoparticles
2025-11-15IP属地 未知0

Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States

Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States

§ Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas 77845, United States

 

 

摘要:Many key processes in conjugated polymers are strongly influenced by multiple energy transfer (i.e., exciton diffusion). We investigated the effect of solvent-induced swelling on the kinetics of multiple energy transfer in nanoparticles of the conjugated polymers PFBT and MEH-PPV. Multiple energy transfer between equivalent chromophores results in an increased rate of quenching by defects due to a cascading or funneling effect. The effects of swelling on energy transfer between polymer chromophores and the resulting exciton dynamics were modeled using a random walk on a lattice of chromophores. The simulation results show good agreement with experimental fluorescence quantum yield, and decay kinetics results at low to moderate THF concentrations. We found that the time scale for energy transfer between chromophores (5 ps for MEH-PPV nanoparticles and 100 ps for PFBT nanoparticles) is highly sensitive to swelling, slowing by an order of magnitude or more for swelled particles. The results support quenching by defects or polarons, amplified by multiple energy transfer or a cascade effect, as a likely explanation for the typically low fluorescence quantum yield of conjugated polymer particles as compared to the free polymer in solution as well as similar effects observed in thin films.